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Validity of the method of superposition of singularities for solving the problem 
of unsteady flow of incompressible fluid past a doubly periodic grid’ of arbitrary 
bodies is proved using the derived below Green’s function which has the property 

of quasi-periodicity. Doubly periodic grids consisting of constant phase shift 
monopole and dipole elements are examined. Exact integral representation of 
the perturbation potential of such grids is obtained and its fundamental proper- 

ties and asymptotic behavior away from the grid are analyzed. According to 
[l, 21 the solution of the problem of unsteady fluid flow past a grid whose ele- 

ments oscillate arbitrarily with respect to time r by the Fourier method reduces 
to the sum of solutions of the problems of flow past a similar grid whose elements 
perform oscillations of a single type but in the presence of a constant phase shift 
between the oscillations of adjacent elements. The problem of three-dimension- 
al flow of incompressible fluid past a grid consisting of bodies with piecewise 

smooth boundaries, which effect harmonic oscillations is considered below. 

Let a doubly periodic grid of period a along the x-axis and b along the y-axis lie 
in the z = 0 plane in the space defined by coordnates xyz . We denote the exterior 
of the grid by D and its boundary defined as the totality of boundaries of all elements 

constituing the grid by dD , i. e. 

dD= mu ~rnnt m, IL=O, fl,*2,. .., 
In, n=--co 

with y = roO denoting the boundary of the basic element (m = 0, n = 0) in the 
rectangular cylinder 

T={2,y,z:~z~<a/2,Jy~<b/2,-~<Z<CC)} 

The law defining the oscillations of any element at frequency o in time r can be 
expressed as follows : 

Vu,, = v, exp Ii (02. - mah, - nbl,)] 

where v. = ( VO,, t&,, Us,) is the vector of the velocity of motion of the basic element, 
and ah, and bha are oscillation phase shifts of adjacent elements. It is assumed that 

h, and ha = con&. 
We have to determine the potential cp = cp (5, y, z) c c2 (D) U c (do) of the 

incompressible fluid flow past the grid as a solution of the following problem 

AQ = 0, (5, y, z) E D (1) 

cp (z + a, Y, 4 exp (G4 = cp (x, y, Z) = rp (5, y + 6, z) exp (hb) (2) 

exp [-- i @ah, + nbh,)] (3) 
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Id< 009 (x9 Y, 4 E D (4) 
where (2) is the quasi-periodicity condition, (3) is the bounday condition at the bound- 
ary of each element, (4) is the condition of boundedness, and n is the inward normal 
to surface dD . Here and subsequently the time factor exp (ior) is omitted. 

Let us prove that function cp can be determined by the method of superposition of 

singularities, To do this we consider Green’s function for the Laplace equation G = 

G (5 - x0, y - y,, z - zo) which has the following properties : 

G (z + a, y, z) exp (- iX,a) = G (2, y, z)=G (5, y -t-b, 2) ex~ (- i&b) (5) 

G=O[exp(--ajzl)l, \zI-+ 00, a>%,>0 (6) 

Re hI += 2nm I a, Re hz # 2nn I b 

We denote the region inside the rectangular cylinder T but outside the grid by T,, = 
T /-j D. 

Let Re hI + &-cm / a and Re hz # 2nn / b . Then, applying to functions rp and 
G Green’s formula, for region T,, we obtain 

OTo 

(cpAG - GAcp) dx dy dz 

Taking into consideration that functions cp and G are quasi-periodic with equal but of 
opposite sign phase shifts, we can equate to zero the sum of integrals 

{r,y,z: x=fa/2, Igj< b/2, -m<z< co; lxj<a/2, 

y=fb/2, -a~<z< CQ} 

along the side boundary of the rectangular cylinder T,, . The integrals over the infinit- 
ely distant edges 1 z 1 = d * 00 tend to vanish by virtue of conditions (4) and (6). 
Using equalities (l), (3), (4) and (6). we obtain 

We expand the perturbation potential cp into a series in consecutive derivatives of 
Green’s function G similarly to the representation in [2] of the velocity field in a plane 
in terms of consecutive derivatives of the hyperbolic contangent. For this we represent 
function G in terms of its Taylor series in the vicinity of point E = q = 5 = 0 

where p are positive integers. This series is uniformly convergent at any point (x0, 
Yo 7 Zo) E To. Owing to this, function cp can be represented by the following expansion 
in derivatives of G: 

r i) 
CPWZ - VOE%w - on 

4 - ; J/p U,.lP&, 1 c3”G (- %I, - !//(I, - Z?) 
PV - amp ayor az”q-p-’ 

(7) 
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where the form coefficients of the considered grid (x = E, q, 5) are 

It will be shown in the following that function G represents the potential of pertur- 
bations generated by a grid of oscillating monopoles. The first derivativesof this func- 

tion are potentials of perturbations generated by grids of oscillating dipoles oriented 
parallel to the coordinate axes. The n th order derivatives of function G are potentials 
for grids of oscillating multipoles of the nth order. The potential of perturbation gene- 
rated by a doubly periodic grid of oscillating bodies can, thus, be constructed by the 

method of superposition of singularities by formula (7). 

To obtain the explicit form of function G we first consider the doubly periodic grid 
of oscillating dipoles of intensity varying from one source to another according to the 
law 

M m,, = abM, exp I-- i (mah, + nb&)l, nz, II -0, +- I,& 2, . . . 

with the fundamental dipole (m, n = 0) of intensity MO lying at the coordinate 
origin. By directing the axes of all dipoles parallel to the z-axis,functiong, - the per- 
turbation potential - can be represented in the form of an infinite series 

This series can be summated by the method described in [3]. Using the gamma function 
representation, we can express the sought series in the form 

‘32 ‘-z 

-+ :I!()2 l - 81 = 
nL s 2 exp {- [(J: + am)” + (y + bn)2 + .z?] t -- 

a m,n=-cc 

i (mah, + nbh,)} pr/t dt 

In terms of standard notation for the theta function [4] the integrand in the last formula 
is of the form 

6s [iazt - hia 1 t&t / nl8 3 [ibyt - hzb 1 ibat 1 ~1 x 

exp I- (2 + y2 + 2”) tl v’t 
Applying the Jacobi transformation to the theta functions 6, [4], for the potential of 
perturbation generated by a doubly periodic grid of dipoles, we finally obtain the inte- 

gral expression 

g, = ~zexp[i(h,r+h,y)J~~~,[a(si_~~)l~] x 
0 

(8) 

This formula is convenient for investigations, since the integrand is factorized in it with 
respect to variables z, y, z and parameters A, and ha. Note that for hia + haa = 0 
the equality (8) yields the particular case presented in 13, 51 in which the potential of 

perturbation induced by a grid of cophased dipoles is expressed by 
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From this directly follows the asymptotic estimate for 1 z 1 --f 00 

g1 = MO sign z + exp (- a 1 z ) ), a = min (2a-c / a, 2n / b) (9) 

The absence of phase shift results in that the perturbation generated by a grid of dipoles 

extends to infinity. 

Let hia + has # 0 which implies the presence of phase shifts in the oscillations of 
dipoles. Then, expressing theta functions in the integrand of formula (8) in terms of the 

Fourier series, we obtain 

g, = J&z exp [i (h,z + h,y)] i exp (2niq.J [ exp (-Pnm + - z2t) t-l”& 
m, n=--oo :s (IO) 

&* = (772s / a) + (ny / b), Bmn = [(nm / a> + (A, /?I” + 

[(nn / b) + (A2 1 31” 

If hi and hs are multiples of &t/a and 2n/b, respectively, we obtain from equality 

(10) an asymptotic estimate of the kind of (9). If hiand & are real but not multiples 

of %~/a and 2nlb, the integrals in the last equality are computable and yield the 
following result: 

g, = Ma sign z exp [i @,a: + h,y)] ffJ em (2nG, - 2 I z I VP,,) 
m, 71=---a 

We have thus established that the potential of perturbation in the presence of real phase 
shifts between the oscillations of dipoles, which are not multiples of &x/ cz and &c/b, 

is doubly-quasi-periodic and is attenuated at infinity in accordance with the law 

gl = MO sign z exp [i (h,r + hzy) - 1 z ( 1/h12 + AZ21 + 
0 [exp (- 2 I 2 I 1/811)1 

A similar estimate can be obtained also for complex 3Lr and ha,when Re Pmn > 0 
for any integral m and n, since the character of convergence of the integral in formula 
(8) is the same 

gi = M, sign zexp [i(h,s + hsy) - I z 1 V/h,’ + A2’l + -~ 
0 [exp (- 2 I z ( Re V /3Jl, 1 z j - 30 

The assumption that h, and hs are complex implies that the oscillation intensity of 
any two dipoles differ not only in phase but, also, in amplitude 

M mn = A,, exp [i (am Re h, + nb Re &)I, 

A mn = M, exp (-- malmh, - nb I&J 

A different result is obtained in the case of existence of such numbers m, and no for 

which the inequality Rep mn < 0 is valid. In fact, the integrals in formula (10) are 
divergent. To extend these analytically with respect to parameters PmrL into the region 
in which Re fi mn < 0, it is sufficient to represent function g, in the form 
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The integrals appearing in the second sum are Bessel functions with index l/s [4]. As 

the result, we obtain for function gl the following analytic extension : 

with the branch of function V_B 
-- 

chosen so that Im 1/ - flmn > 0 for all 
numbers moand no. In the last equality the integral is convergent, which implies that 
the perturbation potential at considerable distance from the grid (1 z [ --+ co) tends to 
vanish 

g, ~IMosignzexp[i(3L,~+th,y)+i~z~~-~h,2-~h,al+ 

0 [exp (- 2 I 2 I V - LA1 
Of interest is the case of existence of two such numbers mO’ and 7~~’ for which the 

equality Im v - pm,,lbS = 0 is satisfied. This obtains for Re h, = - 27C77Z0’ / U 
and Re as = - Zrccn,,’ / b. Tn that case the perturbation potential at considerable dis- 
tance from the grid does not tend to vanish but behaves as a plane wave 

Rl - MO sign z exp I- z Im A, - yTm hz + I 1 z [‘1/ (Im ?# + (Im A#1 

Thus, if the grid is tuned so that the real parts of dipole phase shifts are multiples of 
2n/a and 2n/b, a plane wave propagates from the grid in a direction determined by 
the variation of amplitudes of these dipoles. 

Let us consider particular cases. Taking into consideration the equality 143 

and tending period b and phase shift A2 to zero in expression (8) for g, , for the potential 
of perturbation induced by a one-dimensional grid of oscillating dipoles lying along the 
s-axis (the plane case) we obtain the expression 

Representing the theta function in the last equality in terms of a Fourier series and com- 

puting the derived integrals, for real h we obtain 
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If the phase shift is a multiple of 2n/a, for the perturbation potential at a distance 
from the grid we obtain the asymptotic estimate 

gl N MO sign 2 + 0 [exp (- a 1 2 ])I, 1 2 I-+ 00 

which is characteristic of cophase oscillations of dipoles (A = 0) . 
If h is small, i. e. 0 < h ( 2n;/a, we obtain the expression 

gl = (M,12)signz{Icthi-(l zl--X)/U + 11 exp L--h (Izl-iz)] + 

[cth x (I .z I + is)la - 11 exp [h (I z I + ix)]} 

whose asymptotic estimate for I z I+ XI is 

g1 - iIf0 sign 2 exp [ - h (I 2 / - ix)1 

These results coincide with those derived in [ 11. If h is such that 0 < 2nm,/a ( 

h-< 2n (ms $- l)la,then g, can be represented by 

g, = L!$ sigll evA”’ ct,h $ (I z I - ix) + CT~!“’ cth$ (I z I + ix) - 

2shhIzI--4 5 ~(-2 xim 
T7l=l 

c) sh[k - 23~ 5) 1 .Z I]} 

If - %t (m,‘+ 1) i a < h < - 25’W?, / U, then 

A-1” 
g, = TsigrlzeiL” eK”‘z’~th$(I z I - is) + e”“cthG (1~1 + iz) + 

2shhIzI +4 2 exp(2 
m=1 

nim$)sh[(h + 2n +) 1 z 1-j 

From the last two formulas we obtain the asymptotics of function g, for 1 z 1 +- 00 
and any real phase shift h 

g1-y 
1 

M,signzexp[--((IZI--iZ)], A>0 

M,signzexp [h (121 + ix)], A<0 

Similar estimates can be obtained for complex A. The most interesting case is that of 
Re h = - &cm/a (m is any arbitrary integer), in which the perturbation potential 
at a distace from the grid behaves as a plane wave 

g1 - M, sign 2 exp [- J: Im h + i I 2 I I Im h \I, z--t 00 

Let us now consider another particular case. If in equality (8) b --t 00 and function 

gi is normalized beforehand with respect to b, then for the potential of the. perturbation 
induced by singly-periodic grid of oscillating dipoles lying in space rcyz along the I - 
axis, we obtain the expression 

where the following equality is taken into consideration: 

~~~tJ~-j13[~(Y+i~))~~exp[(y+i~,2tl-- 
.A 

In the considered case for the potential g, for any real A, away from the grid (p + w) 
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we have the following asymptotic estimate : 

Thus for a single-row grid in a three-dimensional space the perturbation potential away 
from the grid tends to vanish for any real ?L . 

Next, let us consider the doubly-periodic grid of oscillating monopoles with intensity 
varying according to the law 

M mn = ab MO exp [i (mh,a + r&b)], m, ‘I= 0, f 1, zk%... 

The perturbation potential go induced by such grid can be determined by direct integra- 

tion of expression (8) with respect to .Z 

go = kTl(G Y, z)dz = - - 

0 

o,[+(,+i~jI~~exp(- hla;Ea” -zz’t)t-%t (ii) 

As in the preceding cases we can establish for the potential go for 1 z 1 + 00 the fol- 
lowing asymptotic estimate : 

I 
MO 1 2 I, h,= -kmja, h,= -22nnib 

I - v-&exP(i(hx fh!l)- IzIV/~~~+~~~], ReA,#- 2nm/a, 

60 - I 
Re A., # -2rtnlb 

MO exp I-- Im (zh, + yh,) + i I.2 I V/(Im W2 + (Im h2j21 

P,eh,= --&cm/a, Imh,=O; Reh,= -22xn/b, Imh,=O 

The sought Green’s function G (X - x0, y - yo, z - zo) is determined by formula 
(11) and is of the form 

G (z - ~0, Y - yo, z - 50) = - (s MO) go (II: - x0, y - yo, z - Z,J = 

It is thus proved that the effective method of superposition of singularities can be used 
for solving the problem of unsteady flow of an incompressible fluid past a doubly-peri- 
odic grid of three-dimensional bodies by constructing doubly-quasi-periodic Green’s 
function for the Laplace equation. The substitution of superposed grids of multipoles of 
various orders (7) oscillating at constant phase shift for a grid of three-dimensional phy- 
sical bodies does not affect the action of the latter. The amplitudes of these multipoles 
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are determined by the form coefficientsofthe considered grid, which depend only OIY 

the latter geometric properties. 
The properties of Green’s functions and of perturbation potentials for grids of oscilla- 

ting mono- and dipoles have been investigated. 
The author thanks M. I. Gurevich for discussing certain results of this investigation and 

for his valuable advice. 
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Solution of the problem of the stabilized lens of fresh-water filtering from a 
channel is derived. At the free surface of the latter the stream function is spe- 
cified in the form of a linear combination of coordinates which includes the 
particular relationships previously considered by Emikh [ 11. The boundary sepa- 
rating fresh and saline waters, the free surface, and the characteristic dimensions 
of the lens are determined with the use of the analytic theory of linear differ- 

ential equations. 

1. Statement of the problem. The geometry of the considered flow region 
is shown in Fig. 1. A porous medium of constant porosity m and filtration coefficientK 

occupies the lower half-plane y < 0 . Fresh 
water of density pi filters from the channel 
A’BA of width 2/r, and penetrates the sur- 
face of the more sense ground water depres- 
sing it in the form of a lens G u G’. It is 
assumed that the saline water of density 

Fig. 1 pz (pa > or) lying below the separation 


